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Decay of the envelope soliton under the action of &kicks and 
a ‘soliton standard map’ 

I S Aranson 
Institute of Applied Physics Academy of Sciences of the USSR, 46 Uljanm Str, 603600 
Gorky, USSR 

Received 4 December 1989 

Abstract. The dynamics of an envelope soliton under the action of &kicks is investigated 
in the framework of a nonlinear Schrodinger equation. It is shown that soliton dynamics 
may be described by a ‘standard map’ for a sufficiently large number of‘ 8-kicks. The 
estimation of the soliton lifetime and radiation level is derived by means of the inverse 
scattering transform. 

1. Introduction 

Progress in nonlinear dynamics is closely related to the analysis of a few universal or 
canonical models. These models must meet two primary requirements: they must 
describe a wide range of physical phenomena and allow for deep analytic investigation. 
An example of such a model describing a universal stochastic instability in Hamiltonian 
systems is a ‘standard map’ introduced by Chirikov (Chirikov and Zaslavsky 1971, 
and  Lichtenberg and Lieberman 1983): 

f = I + K f ( O )  e=n(J)+e (1) 

where f( 0 )  is a 2 7 ~  periodic function, K is a nonlinearity parameter, while I and O 
have a sense of action-angle variables. This map can be obtained directly from an  
equation of a pendulum excited by &kicks: 

d2X/d t2+C 8( t - /T)n(X)=O.  (2)  
I 

A standard map makes a very good model: analytic results obtained for its stimulated 
numerous investigations concerned with both a deeper insight into the properties of 
dynamic chaos in Hamiltonian systems and  generalization to other physical situations. 
A ‘quantum analogue’ (Chirikov er a1 1981, Chirikov 1984) obtained by the quantiz- 
ations of (2) 

is one of the most significant generalizations of the standard map. 
The Schrodinger equation (3) is interesting as a description of a quantum system 

that behaves stochastically in a classical limit. The main problem here is the relation 
between classical and  ‘quantum’ chaos. ‘Quantum chaos’ is the complex dynamics of 
narrow wave trains of the field U ( x ) .  If the train width is much smaller than the 
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variation of the potential n ( x ) ,  then by virtue of the W K B  method for the mass centre 
of the wave train, we obtain again ( 2 ) ,  which reduces to the analysis of the standard 
map (I)? .  The train spreads with time, which results in the degeneration of ‘quantum 
chaos’ and in the onset of multifrequency oscillations that, naturally, cannot be 
interpreted within (1). Therefore the range of times for which (1) and (2)  are applicable 
is one of the most significant problems in the theory of ‘quantum chaos’. At present, 
some definite estimates of this value have been obtained (Chirikov and Shepelyansky 
1986, Zaslavsky 1981, Berman and Kolovsky 1985). 

On the other hand, since the wave train velocity is of the order of E = i ln(x)’l l<< 1, 
i.e. of the order of E ,  the classical-like chaos must exist at times t ,  greater than 1 / ~ ,  
otherwise, it would be meaningless. On the other hand, by virtue of the W K B  approach, 
the range of times for which ( 2 )  is applicable must meet the condition t,<< 1 / ~ ’  (the 
wave train width becomes equal to 1 / ~  in this time). We thus obtain the applicability 
condition for a classical description: 1 / ~  < t ,  << 1 / ~ ’ ,  which is quite acceptable when 
E + O .  It was shown in Chirikov (1984), Chirikov and Shepe!yansky (1986) and Zas- 
lavsky (1981) that by virtue of the exponential instability of the trajectories of map 
( l ) ,  the number of iterations (kicks) at which the train moves according to classical 
equations is, in fact, -In(&), i.e. t ,  - /In(E)/el. 

There naturally arises a question: are there mechanisms to prevent the train from 
spreading and to stabilize the ‘quantum chaos’. A positive answer was given in Aranson 
et a1 (1989): particle-like chaos exists at very large (greater than 1 / ~ ’ )  times in a 
nonlinear analogue of (3): 

U, = i( U,, + n ( x ,  t )  U + I u I ’  U )  (4) 

if the potential n ( x ,  t )  is sufficiently smooth. The nonlinearity compensates the spread- 
ing in specified solutions-solitons of (4) thus stabilizing the ‘quantum chaos’. Equation 
(4) describes, for example, the propagation of optical pulses in a smoothly 
inhomogeneous lightguide, etc. We can also ‘speculate’ that it is a generalization of 
(3) to the case of the ‘nonlinear quantum theory of the field’. 

Previous investigations (Aranson er a1 1986, Aranson et a1 1989) failed to solve 
the equation of the analytical estimates of the lifetime of solitons of (4). In the general 
case, this problem cannot be solved for an arbitrary potential n ( x ,  t ) .  Numerical 
simulations (Aranson et a1 1989) showed that this time is not smaller than 1 / ~ ’ .  
Fortunately, we can again refer to the generalization of the standard map (1) derived 
from the nonlinear analogue (3): 

~ ( ~ - / T ) ~ ( x ) u + ~ ~ u I ’ u  ( 5 )  

From (5) we obtained the evolution equations for the soliton parameters and sufficiently 
rigorous estimates for the soliton lifetime. The soliton dynamics for the case under 
study is described by almost standard map equations and, therefore, can be stochastic. 
Below we will call it a ‘soliton standard map’ since it is related primarily to soliton 
parameters. 

The paper is organized as follows. Parameter variation of a pure soliton state in 
one &kick will be determined by the inverse scattering transform (IST) in section 2 .  
The spectrum of soliton radiation in one 8-kick will be found in section 3. Section 4 

t Strictly speaking, chaos in ( 3 )  is impossible in view of the discreteness of the spectrum of eigenvalues of 
the quantum system given in the bounded region. 



Decay of the envelope soliton 583 1 

will give the estimate of the soliton lifetime and the number of iterations for which a 
standard map holds. Rigorous mathematical formulation and proof of all principal 
results make the problem valuable. Although our paper is ‘physical’ in form there is 
no doubt that rigorous mathematical substantiation is possible. 

2. Evolution of soliton parameters 

The map between successive 8-kicks will be derived from (5) using the procedure 
adopted by Chirikov and  Shepelyansky (1986). Assuming that U ( x ,  t )  is a continuous 
function at the instant of a 8-kick and integrating (5)  over the time interval h - 0 
h+ 0, we obtain the following relation:: 

t 

U(x, I = h+ 0 )  = U(x,  17- 0) exp( in(x) )  (6) 

(below we will use the definition: n(x) = U ( x ,  t = h+ 0)) .  Apparently, the 8-kick 
only changes the phase of the wavefunction U(x ,  t ) .  The evolution of U ( x ,  t )  between 
8-kicks is described by a nonlinear Schrodinger equation ( N S E ) :  

U, = i (  U,, + 21 U/’ U ) .  (7) 
Equation (7) is a completely integrable system (Zakharov and Shabat 1971, Newell 
1980) and  can be solved using the Zakharov-Shabat IST. Consequentially, knowing 
U(x, t )  we can find U(x ,  I + 7 )  (it is possible to find an explicit solution of (7) only 
for a very special class of initial conditions; in the general case we will use the asymptotic 
technique). The problem of the existence of soliton is solved quite correctly: the soliton 
exists until the linear system: 

x l x  +ikx ,  = Ux, xZ1;--ikxz= U * x ,  (8) 
associated with (7) has a discrete eigenvalue. 

Using IST one can proceed from the analysis of N S E  to the investigation of algebraic 
equations for scattering data (some details will be discussed below), which simplifies 
the solution significantly and  yields rigorous estimates. 

Assume that the function U(x,  t )  and the corresponding scattering data S (  k )  before 
the Ith 8-kick are known. At the instant of the 8-kick the scattering data S ( k )  are 
transformed: S , + , ( k )  = F [ S , ( k ) ]  where F is a functional. The evolution of the scattering 
data between the 8-kicks is trivial (see, e.g., Newell 1980, Lamb 1980). Thus, the 
scattering transform may reduce the investigation of (6) to the analysis of a functional 
map through a 7-period. We failed to obtain this functional in the explicit form (a 
fundamental solution of system (8) with an  arbitrary function U(x, t )  is needed for 
this purpose). Nevertheless, for a nearly soliton case it can be written in a very simple 
form. 

For the construction of F we shall make use of some aspects of IST for NSE. The 
spectrum of the problem (8) for the localized function U(x, t )  is known to consist of 
a countable number of discrete eigenvalues k,  with the corresponding localized eigen- 
functions of (8) and of a continuous spectrum filling the real axis of k with the 
corresponding eigenfunctions x,,* bounded in the infinity. The discrete eigenvalues 
correspond to solitons while the continuous spectrum corresponds to radiation. Below 
we shall be interested only in a single-soliton case, that is the only discrete eigenvalue 
of (8). 

f The first a n d  the last terms on the right-hand side of ( 5 )  can be neglected at the instance of a &kick 
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For the analysis of (8) introduce a pair of so-called fundamental solutions having 
a different behaviour at infinity (Iost functions): 

Besides (9), we can construct another pair of solutions (8): 

The solutions (9) and (10) are linearly dependent and are related by 

Besides, we can readily obtain the following expressions: 

c ,* (k )  = -c , , (k )  c , , ( k )  = c % k )  lc,,(k)l”lc,,(k)l2= 1. (12) 

The coefficients c , , ( k )  and c , , ( k )  are known as scattering data. A continuous spectra 
in IST can, in fact, be described knowing only the value R ( k )  = c l l (k ) / c lZ(k ) ,  which 
is interpreted as a reflection coefficient, and the information on the poles of the 
coefficient cl,( k ) ,  which characterizes discrete eigenvalues. 

For the derivation of the law of the variation of scattering data we shall have to 
solve two different problems: find the variation of the soliton prameters (related with 
a discrete eigenvalue) and of the parameters of a continuous spectrum. The first problem 
may be solved using a traditional perturbation theory for a soliton while the second 
one presents considerable difficulties and involves quite delicate investigations. 

A single-soliton solution of ( 7 )  has a form (Lamb 1980) 

Uo(x) = 2p exp(-iO)/cosh(z) (13) 
where z = 2 p ( x - [ ) ,  [ = - 4 a t + x o ,  O = a / P z + S ,  S = 2 a [ + 4 ( a 2 - p 2 ) + S o ,  p is the 
soliton amplitude, U = -4a is the velocity and xo and So are the constants describing 
the position of the mass centre of the soliton and its phase. The single soliton solution 
(13) has a corresponding non-refractive potential (i.e. ell( k )  = cZ2( k )  = 0), with 

cY,(k) = ( k  - ko)/(k - k,*) (14) 

ko= (Y +ip (15) 

where 

and unique non-degenerate eigenfunction 

-exp( -it)) 
CPO = (;!) = t exp( -ik,x)/cosh( z )  

Assume that before the 8-kick we have an unperturbed soliton solution (13). Then, 
after the $-kick the system (8) will take the form 

c p l .  ( 1 7 )  c p l x + i k ~ , =  U 0 e in l r i )  C P ~  cpZx-ikcp2=-UO*e-‘n(~l 



Decay of the envelope soliton 5833 

In search of the soliton parameters after the &kick, (17) will be written as 

cp,r + ikp,  = ( U + S U ) ~ ,  (18) 

where 0 is a new soliton solution and 8U = U' exp(in(x)) - 0. The solution to (18) 
will be sought in the form of a series 

q 2 ,  -ikq2=-(U*+GU*)cp, 

Substituting (19) into (18) for the function p'"', we obtain a set of linear equations 

qj;'++kcp'j"'- ucpy'= 8Uqy-I '  q ~ : ' + i k q ~ ' -  u*q\"'= SU*q\"-". (20) 

The solvability condition of (20) is the orthogonality of the right-hand side to the 
localized eigenfunction of a conjugate problem: 

J: I-, ($Lkjf+GU*(p:) d x = O  (21) 

(here the fundamental solutions of q ( x )  correspond to the soliton state U ( x ) ) .  The 
orthogonality conditions may be fulfilled only for certain relations between the soliton 
parameters a, p and di, B, before and after the 8-kick, respectively. In particular, we 
obtain the following expression for parameters a and P in the first approximation: 

P = P  di = a  - nx(xo)/2. (22) 

Taking into account that v = -4a and that the soliton mass centre coordinates xo and 
x between the 8-kicks are related by a simple expression x = x,+ TU, we obtain the 
following return map: 

v =  v+2n,(x,) 2 = x o +  TV. (23) 

In the simplest case n(x)=cos(yx) ,  equation (23) is a well known standard map 
demonstrating strong stochastic properties (Chirikov and Zaslavsky 1971). Thus, the 
problem of the evolution of the soliton parameters reduces, in the first approximation, 
to the analysis of a such map, as in the case of system ( 2 )  or system (3). This circumstance 
justifies the term 'soliton standard map' used for (5). In spite of (3) the equations (23) 
describe correctly dynamics of ( 5 )  for a very large time interval. 

3. Evolution of radiation 

We shall make an attempt to solve the problem of the soliton radiation of waves under 
the action of &kicks. We shall first consider some physical aspects in order to estimate 
the level of radiation. 

Note that n,,(x) rather than n , ( x )  is a small parameter for radiation. This fact 
can be proved by expanding n ( x )  in the series n ( x )  = n ( x o )  + n , ( x , ) ( x  -xo) + 
nxr(xO)(x - ~ ~ ) ~ / 2 + ,  . . in the neighbourhood of the soliton mass centre. If we neglect 
all the terms except the first two then the perturbation will not result in radiation: the 
perturbed state will be a pure soliton with the parameter a renormalized by virtue of 
(23). Therefore we shall take n,,(xo) as a small parameter for radiation. 

On the other hand, simple physical relations suggest that the radiation power must 
not depend on the sign of n r r ( x O ) ,  i.e. it must be proportional at least to n,,;(x0)? (this 
estimate was given by Pikovsky (1985)). If it is proportional to n, , (x , )  or some other 
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derivative of n(x,), the soliton 
This, however, contradicts the 
before and after the &kick: 

r 

state can, in principle, be amplified radiating 
law of conservation of the 'total number of 

quanta. 
quanta' 

0 4 )  

Thus, it is natural to expect that the power W( k )  of the waves radiated by the soliton 
will be proportional to nXx(x)', i.e. E ~ ,  Such a weak effect can be determined by a 
standard method of perturbations with respect to E only up to the fourth-order 
approximation, which takes much time and effort. Therefore we shall employ below 
an asymptotic method that provides faster convergence. A characteristic feature of this 
method is the use of exact relations between the scattering data obtained from (8). 

According to Lamb (1980), the radiation power W ( k )  is 

~ ( k )  = - - ~ n ~ c , ~ ( k ) ~ ' / ~ .  (25) 

We shall express the coefficients clz( k )  and c, ,( k )  through fundamental solutions 
(9). Assume that we know the fundamental solutions cpo and +' for SU=O. The 
corresponding coefficients cyz( k )  and cy , (  k ) ,  by virtue of (1 l ) ,  are related to 'p" and 
t,bo by trivial expressions 

(26) c : , ( k )  = T - t X  lim exp(-ikx)cp:(x, k )  cy2(k)  = Y - X  lim exp(ikx)cpy(x, k ) .  

When SU Z 0, the solutions cp and 4 can be represented in the form 

50 = C1(X)cp0+ C 2 ( X M 0  (27) 

where Cl(x)  and C2(x)  are unknown functions. Substituting (27) into (20) and using 
(26) as well as cy2= cpyt,bi-'p:+y (Lamb 1980), we obtain the following exact integral 
relations between cp and + and c , , ( k )  and c , , ( k ) :  

J - x  

Assume now that il and SU have the same sense as in the previous 
calculate Jc,,(k)12 ( c y , ( k )  = 0): 

Our calculations will need the functions cpo and 
for 0: 

in the form used in soliton solution 

k- C? - ip tanh(z) 
-ip eis cosh-l(z) 

k - CU 4 ip tanh( z )  
-ip cosh-'(z) 

where all parameters are the same as in (13) and (16). Correspondingly, we shall have 

(32) cy2( k )  = ( k  - & ) / ( k  - @) = ( k  - CU -ip)/( k - 6 +ip). 
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The term (p in (30) can be replaced in the first approximation by cpo, which yields: 
oc 

lcI2(k) l2= jl-~-~[sU~cp:)’+sU*(cpP)’l dXI2. (34) 

Substituting (31) into (34), and employing (25), we obtain 

1 2p exp[i(kx - e ) ]  
r J ( k  - E*)’ cosh( z )  

W ( k ) = -  [{exp[in,,(xo)(x - ~ , ) ~ / 2 ]  - l}(k-E +ip tanh(z))2 

-P’{exp[-in,,(x,)(x -x0)>/2]- 1) cosh-2(z)]2 dx. (35) 

In spite of the awkward integral in (35), the result for W ( k )  is quite clear (see the 
appendix): 

It is seen from (36) that the soliton radiation line is exponentially narrow and Doppler 
shifted due to the soliton motion. We thus verified that W (  k )  - E ~ ,  which confirms our 
intuitive physical supposition. 

We shall also need an estimate for c , , ( k ) .  By virtue of 

(the term n,,,(xo) appearing in (28) can be compensated by a more exact fitting of E ) .  
Our next step will be to take into account the response of radiation to the soliton 

motion. The simplest way is to use the exact expressions for the integrals of (7) in the 
scattering data representation (Faddeev 1980): 

(a)  ‘total number of quanta’ 

Nq = 1 1 U(x)I’ dx  = W ( k )  d k + 4 p  J (38) 

(b)  ‘pulse’ 

( U* U, - U $  U )  dx = 2 k W (  k )  d k - SCUP. (39) 

The integrals (38) and (39) permit us to ‘link’ the radiation and the soliton reasonably. 
Let us analyse the expression (38) for the ‘total number of quanta’. Apparently, 

the N S E  ( 5 )  does not change its form for the class of perturbations considered here. 
Hence, the soliton amplitude does not change in the absence of radiation /3 = p= 
constant. With the radiation taken into account the soliton is damped. Substituting 
(36) into (38), we obtain the law of radiation soliton damping 

1 

P = P  - .irln,,(xo)I’il.i,,/(64P~) (40) 
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where 

MO = cosh-,( t/277)/( 1 + t 2 )  dt. 1 
We can obtain an (exact!) expression for the law of pulse correction 

(U*U,-  U t  U )  d x  = -4Gpi2  (41) 

Because the initial state is a pure soliton, Po= - 8 4 ,  

8c@=SaP+2  1 k W ( k ) d k - [  n,lUo/2dx. 

Taking into account U = -4a, we obtain 

- 
u = u - -  1 [ k W ( k ) d k + l [  (43) 

2P 2P 

Generally speaking, the integral 5 n,l U’/’ d x  in (43) can be calculated to any accuracy, 
but it is sufficient for us to have the first three terms: 

where 

MI = j f’ dt/cosh-’( t )  = r2 /6  
X 

M,= j t4dt/cosh-’(t) =7r4/120. 
--x - X  

In the final analysis we have a system of maps 

2 = x,+ 76. 

One remarkable fact must be emphasized: (45) is a dissipative system-the soliton 
amplitude is damped with time. This does not contradict the conservatism of the initial 
system (5). Such a phenomenon has a simple explanation: the ‘total number of quanta’ 
persists only in a complete system, i.e. ‘soliton+radiation’. Under the action of 
perturbations the soliton damps due  to the emission of quanta. The quanta in an 
unbounded system go to infinity and cannot be reabsorbed by the soliton. This effect 
is completely equivalent to dissipation. 

The dissipation was obtained in our theory only for the soliton amplitude P. As 
for the equation for velocity U, our taking radiation into account only affected the 
renormalization of the force acting on the soliton but did not give ‘radiation viscosity’. 
This is explained by the fact that the numbers of quanta radiated in the x and  -x  
directions are equal in the first approximation. However, with subsequent corrections 
to W( k) taken into account, the radiation will become non-isotropic, which will give 
radiation viscosity in the equation for U. Such a situation will be described by a 
dissipative analogue of the standard map (Vlasova and  Zaslavsky 1983) in which a 
strange attractor exists. 
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4. Estimation of the soliton lifetime 

In the previous section we obtained the transformation of the scattering data in one 
&kick. The next S-kick will occur with a perturbed state: soliton + weak radiation. For 
a correct estimation of the soliton lifetime we shall have to take into account the effect 
of ‘residual’ radiation on the soliton dynamics. 

We shall make use of the results obtained in section 3. Assume that before the Ith 
&kick the field U(x, t )  can be represented in the form U ( x ) =  Uo(x)+  f i ( x ) ,  where 
U,, is the soliton part of the solution and fi is the radiation. Let the scattering data 
c , , ( k )  and c , , ( k )  o f t h e  form c,,(k)-O(n,,) and  c , , (k )  = ( k - k , ) / ( k - k , * ) + O ( ( n , , ) ’ )  
correspond to such a field. In search for F , , ( k )  and C , , ( k )  after the S-kick, we shall 
write (8) in the form 

(p I ‘i + i kp I - ( U + fi) 9, = 6 Up, ( p z y - i k ( p , + ( ~ +  f i ) * ( p , = a ~ * ( p ,  (46) 
where 6U = U U’, ir’(k,  x )  = f i ( k + ~ a ,  X I ,  A Q  = n,(x0)/2 are 
taken in the sense (18). For the coefficient c , , ( k )  we obtain the force (28) and (29): 

ut+ fi e ~ n ( r ) -  - 

The solution 

Therefore w( k )  - E ~ ,  i.e. the order of magnitude does not change. This means that 
we can write an  expression for the solution amplitude at the lth step: 

P = P - O ( n . ‘ i . ‘ i ( x o ) 2 ) = p - ~ ( & 4 ) .  (49) 
The particular form of the correction will be considered below. Equation (49) allows 
for the estimation of the soliton lifetime: the number of iterations of (49) must not 
exceed E - ~ .  Assuming the interval between the S-kicks to be 7 - 1/ E ,  we obtain the 
soliton lifetime T - E - ’ .  The soliton dynamics during this period is described to a high 
accuracy ( O ( E ~ ) )  by a standard map of the form ( 2 3 ) .  Thus, the ‘soliton chaos’ lives 
anomalously long as compared with the ‘linear quantum chaos’. This is related to a 
high level of soliton stability with respect to adiabatic perturbations. 

Let us now calculate an  explicit, as for a possible, form of (47). The integral in 
(47) is divided into two parts: one related to the soliton SU, = Uoexp( in (x ) )  - U and 
the other to the radiation SU, = fi” exp( in(x) )  - fi. 

The expression for the soliton part does not differ from (35) and (36). The second 
part describes the transformation of radiation under the action of the perturbation. 
This part of the integral can be calculated explicitly only assuming that the radiation 
‘follows’ the soliton. Indeed, if the real size of the function c ( x )  is much smaller than 
1 / ~ ,  then and it can be neglected in comparison to the 
contribution of the soliton part 6 U , .  Then we shall have the following trivial relation: 

( f i o e x p ( i n ( x ) )  - 6) d x  - 

where by virtue of the law of the evolution of the scattering data we have 

c?,(k, 7 )  = c y , ( k )  
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The expression (50) can be written as 

If (50) holds, we can readily verify that (45) have the same form for other 8-kickst. 
The approximation of the radiation ‘following’ the soliton is justified by the fact 

that the modes with a phase velocity close to a soliton velocity make the main 
contribution to the radiation. The perturbation ‘forces’ from the soliton a narrow wave 
train that moves, spreading slowly, together with the soliton. The train width is /3 at 
the initial moment of time. If the repetition interval of 8-kicks is about 1 / ~ ,  then in 
view of the diffusion nature of (7)  the wave train width by the next &kick will be 
/3/&”’<< 1 / ~  (the nonlinearity of the medium can be neglected). As long as the scale 
of the function is d(x)<< 1 / ~ ,  the evolution of o ( x )  can be determinated using the 
W K B  approximation (Abdullaev and Zaslavsky 1983). We shall find that the velocity 
and the coordinates of the mass centre of the wave train vary also by virtue of the 
map ( 2 3 ) .  

The problem of the spreading of a narrow wave train was investigated in detail by 
Chirikov (1984), Chirikov and  Shepelyansky (1986), Chirikov et a1 (1981) and Zas- 
lavsky (1981). It was mentioned that the width of such a train can grow exponentially 
to the number of 8-kicks if the corresponding trajectory of the return map associated 
with ( 3 )  is stochastic. In view of the above, the ‘standard soliton map‘ in the form (45) 
can be used in our analysis only for a finite and  sufficiently small number of &kicks 
NO= -lnlnyl. At larger times, the term related to the radiation in the integral (47) may 
become of the order of the soliton 8 U I .  Then, the form of the correction due to the 
radiation will change, although the order of magnitude will be retained. In the 
expression for W (  k )  this is equivalent to the early history of the soliton motion. 

5. Conclusion 

We have investigated the problems of the dynamics and  the lifetime of a single soliton 
in an  NSE in the presence of weak perturbations. We have derived the return map for 
the soliton parameters, the level of ‘radiation’ and the laws of ‘soliton-radiation’ 
interaction. We have also obtained an unexpected result: the soliton lives for an  
extremely long time in the comparison with wave train within linear Schrodinger 
equation. 

The technique proposed in our paper can be readily generalized to a multisoliton 
case. For this case we can obtain a system of coupled standard maps for the soliton 
velocities and  the centre of mass coordinates. Because the radiation weakly influences 
the soliton dynamics at reasonable times, the equations describing a multisoliton system 
can be assumed to be finite dimensional in spite of continuous NSE.  Moreover, the 
radiation makes the stochastic set in such a system attracting. 

f When calculating the integrals with respect to k ,  the last term in ( 5 1  1 can be neglected because i t  contains,  
when 7 -  1 / ~  x 1, a multiplier e x p ( i k 2 r i  rapidly oscillating with respect to k.  
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Appendix 

Denote the integral in (35) as I: 
U‘ 

I = 1 [t3U(cp4)2+8U*((p7)2]dx. 
-X 

Take into account that 

8~ = U, e’”“’- U = [2p  e-’8/cosh(z)]{exp[in,,(xo)(x - ~ , ) ~ / 2 ]  - 1) 

= ipnx,(xo)(x -x0)’ e-’’/cosh(z). (A.2) 
Substituting into I expressions for cpy and q: from (31), we obtain after obvious 
transformations the following equation: 

x [ 2 p / c o s h ( z ) ( k - & + i p  t a n h ( ~ ) ) ~ + p ’ / c o s h ’ ( z ) ]  d x  

x [ g 2  - 1 + 2 ig  tanh( z) + 2/cosh2( z ) ]  d z  

where g = ( k  - a ) / p .  Take into account that 
(‘4.3) 

I =  -i nxx (XO) (e’”’),,[g 2 -2iga/az-(a2/az’)] cosh-’(z) dz. (A.4) 

Then after simple transformations, the integral I will take the form 

The integral (A.5) can now be calculated in terms of elementary functions: 
X 

exp(igz) dz  = T cosh - ’ (g / r )  = T cosh-?[(k - & ) / ( 2 p r ) 3 .  (A.6) I-, cosh(z) 

Using (A.5) and  (A.6) we finally obtain the expression (36). 
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